/* * Interactive disassembler (IDA). * Copyright (c) 1990-99 by Ilfak Guilfanov. * ALL RIGHTS RESERVED. * E-mail: ig@datarescue.com * * Atmel AVR - 8-bit RISC processor * */ #include "avr.hpp" #include "../../ldr/elf/elfr_avr.h" //------------------------------------------------------------------------ static void set_immd_bit(const insn_t &insn, int n) { set_immd(insn.ea); if ( is_defarg(get_flags(insn.ea), n) ) return; switch ( insn.itype ) { case AVR_andi: case AVR_ori: op_num(insn.ea, n); } } //---------------------------------------------------------------------- void avr_t::handle_operand(const insn_t &insn, const op_t &x, bool isforced, bool isload) { switch ( x.type ) { case o_reg: case o_phrase: break; case o_imm: if ( !isload ) goto WRONG_CALL; set_immd_bit(insn, x.n); if ( op_adds_xrefs(get_flags(insn.ea), x.n) ) insn.add_off_drefs(x, dr_O, OOF_SIGNED); break; case o_displ: set_immd_bit(insn, x.n); if ( !isforced && op_adds_xrefs(get_flags(insn.ea), x.n) ) { int outf = OOF_ADDR|OOFS_NEEDSIGN|OOFW_32; ea_t ea = insn.add_off_drefs(x, isload ? dr_R : dr_W, outf); if ( ea != BADADDR ) insn.create_op_data(ea, x); } break; case o_near: { cref_t ftype = fl_JN; ea_t ea = to_ea(insn.cs, x.addr); if ( has_insn_feature(insn.itype, CF_CALL) ) { if ( !func_does_return(ea) ) flow = false; ftype = fl_CN; } insn.add_cref(ea, x.offb, ftype); } break; case o_port: if ( ram != BADADDR ) { ea_t ea = ram + x.addr; if ( subarch < E_AVR_MACH_TINY ) ea += 0x20; // skip 32 mapped GPRs for legacy archs if ( x.type == o_port ) { // verify that the calculated address corresponds to the register name const ioport_t *port = find_port(x.addr); if ( port == NULL || port->name.empty() ) break; ea_t rev = get_name_ea(BADADDR, port->name.c_str()); if ( rev != ea ) break; } insn.add_dref(ea, x.offb, isload ? dr_R : dr_W); } break; case o_mem: { ea_t ea = map_data_ea(insn, x); insn.add_dref(ea, x.offb, isload ? dr_R : dr_W); } break; default: WRONG_CALL: if ( insn.itype != AVR_lpm && insn.itype != AVR_elpm ) warning("%a: %s,%d: bad optype %d", insn.ea, insn.get_canon_mnem(ph), x.n, x.type); break; } } //---------------------------------------------------------------------- static bool may_be_skipped(const insn_t &insn) { ea_t ea = insn.ea - 1; if ( is_code(get_flags(ea)) ) { int code = get_wide_byte(ea); switch ( code & 0xFC00 ) { // 0001 00rd dddd rrrr cpse rd, rr 4 Compare, Skip if Equal case 0x1000: // 1111 110r rrrr xbbb sbrc rr, b Skip if Bit in I/O Register Cleared // 1111 111r rrrr xbbb sbrs rr, b Skip if Bit in I/O Register Set case 0xFC00: return true; // 1001 1001 pppp pbbb sbic p, b Skip if Bit in Register Cleared // 1001 1011 pppp pbbb sbis p, b Skip if Bit in Register Set case 0x9800: return (code & 0x0100) != 0; } } return false; } //---------------------------------------------------------------------- int avr_t::emu(const insn_t &insn) { uint32 Feature = insn.get_canon_feature(ph); bool flag1 = is_forced_operand(insn.ea, 0); bool flag2 = is_forced_operand(insn.ea, 1); bool flag3 = is_forced_operand(insn.ea, 2); flow = (Feature & CF_STOP) == 0; if ( Feature & CF_USE1 ) handle_operand(insn, insn.Op1, flag1, true); if ( Feature & CF_USE2 ) handle_operand(insn, insn.Op2, flag2, true); if ( Feature & CF_USE3 ) handle_operand(insn, insn.Op3, flag3, true); if ( Feature & CF_CHG1 ) handle_operand(insn, insn.Op1, flag1, false); if ( Feature & CF_CHG2 ) handle_operand(insn, insn.Op2, flag2, false); if ( Feature & CF_CHG3 ) handle_operand(insn, insn.Op3, flag3, false); // // Determine if the next instruction should be executed // if ( !flow ) flow = may_be_skipped(insn); if ( segtype(insn.ea) == SEG_XTRN ) flow = false; if ( flow ) add_cref(insn.ea,insn.ea+insn.size, fl_F); return 1; } //---------------------------------------------------------------------- int idaapi is_align_insn(ea_t ea) { insn_t insn; decode_insn(&insn, ea); switch ( insn.itype ) { case AVR_mov: if ( insn.Op1.reg == insn.Op2.reg ) break; default: return 0; case AVR_nop: break; } return insn.size; }